A Lyapunov function for fully nonlinear parabolic equations in one spatial variable

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to fully nonlinear parabolic equations

These notes contain a short exposition of selected results about parabolic equations: Schauder estimates for linear parabolic equations with Hölder coefficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations. MSC. 35K55, 35D40, ...

متن کامل

A Counterexample to C Regularity for Parabolic Fully Nonlinear Equations

We address the self-similar solvability of a singular parabolic problem and show that solutions to parabolic fully nonlinear equations are not expected to be C.

متن کامل

A Method for the Spatial Discretization of Parabolic Equations in One Space Variable

This paper is concerned with the design of a spatial discretization method for polar and nonpolar parabolic equations in one space variable. A new spatial discretization method suitable for use in a library program is derived. The relationship to other methods is explored. Truncation error analysis and numerical examples are used to illustrate the accuracy of the new algorithm and to compare it...

متن کامل

Convergence of Rothe’s Method for Fully Nonlinear Parabolic Equations

Convergence of Rothe’s method for the fully nonlinear parabolic equation ut +F (D 2u,Du, u, x, t) = 0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.

متن کامل

On Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds

In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: São Paulo Journal of Mathematical Sciences

سال: 2018

ISSN: 1982-6907,2316-9028

DOI: 10.1007/s40863-018-00115-2